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THE RECUPERATIVE INERTIA DRIVE AS AN OSCILLATORY SYSTEM

I. D. Yudovskii

Problems of improving the response speeds of cyclic machines by using kinetic-energy
accumulators based on mechanisms with nonlinear position functions are discussed. The
operating principle is described, the dynamics are analyzed, and the basic characteristics of the
system are stated. The properties of the system are compared with those of a traditional self-
oscillatory system with elastic elements.

The response speeds and load capacities of cyclic transportation and industrial-transport machines can be
increased by using recuperative drives. In recuperation there is a periodic exchange of energy between the final
member and an accumulator, and the motor merely compensates kinetic-energy losses. Recuperative-drive cyclic
mechanisms are essentially self-oscillatory systems. Thus, recuperative manipulator drives that significantly
improved manipulator efficiency have been based on a mass-elasticity oscillatory system [1,2].

At the same time, it is possible to build a recuperative drive using oscillatory systems that do not have
potential-energy-accumulating elements. The possibility of such oscillations follows from the equation of motion
for conservative systems [3] a§=+0,5(da/dg)§*+(dIl/dg) =0, which admits of periodic solutions at constant
potential energy II if the inertia coefficient a is a periodic function of the generalized coordinate q. Cyclic
mechanisms with nonlinear transfer functions possess this property [4]. In these mechanisms, the speed of the
driving element is nearly constant, but the periodicity of the transfer function makes the travel of the driving [sic]
element nonuniform and is a source of parametric excitation of elastic vibrations in the drive.

For many mechanisms with wide link-speed ranges, interest focuses on periodic motions in which kinetic
energy is exchanged between the links of the mechanism and the variations of their potential energy is not a
material factor. These mechanisms include inertia-type recuperative drives (Fig. 1) consisting of massive links 1 and
2 joined by a transfer mechanism 3 whose position function is a closed curve without singular points that can be
generated, for example, by a jointed-beam four-link [5] (Fig. 1b) or by a variable-ratio belt [6] (Fig. 1c). In position
I, shaft O is stationary and shaft O’ rotates in the direction indicated by the arrow. On transfer to position II, shaft
O accelerates and shaft O’ is braked to a stop, etc. Thus, kinetic energy is exchanged between links 1 and 2.

As the massive links move, the transfer function between them varies theoretically from - to + « and
back with no discontinuities, supporting exchange of kinetic energy between the links at limited accelerations.
Automatic variation of the magnitude and sign of the transfer function during motion sets up oscillations of links
1 and 2 with an amplitude determined by the kinematics of the transfer mechanism, with no change in their
potential energy. We shall refer to this oscillatory system as an inertia-type kinematic oscillator.

The equation of motion of a system with weightless and nondeformable transfer-mechanism links and ideal
couplings in the mechanism has the form

(I + 1)+ luu" @+ M+ M.u=0, 1)

where I, and I, are the moments of inertia of links 1 and 2, M, and M, are the moments of the external forces,
reduced to thc links; @, ¢, ¢ are the rotation angle, angular vclocuy, and angular acceleration of link 1, u—xb/ P
is the transfer function, ¥ is the angular velocity of link 2, and u’ = du/de¢.

Since the transfer-mechanism position function of an inertia-type recuperative drive is a closed curve with
no breaks, its transfer function on segment [®,, $,] (Fig. 2) is continuous and two-valued and consists of decreasing
and increasing branches with asymptotes at points ¢, and $,. The branches intersect the ¢ axes at points P, and P,.
The total amplitude of the osciliations ¢ = $, - ,. Let us assume for the sake of argument that the transfer
D 4980 oy Allerton Prass, inc. :
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function specified by the decreasing branch applies as the ¢ coordinate increases, and denote that function by
u,(#); the branch that corresponds to motion with a decreasing coordinate will be denoted by u_ (¢). The directions
of variation of the transfer function are indicated by the arrows.

For a conservative system, Eq. (1) can be integrated in quadratures:

t:"":/’d’h ‘:Pz“bomsv ('p:—\b,:gm @
. .
where 1, = jyi; +ll+2 dCP. T W e J'Yi—"*'u-z dfP. m:":(i=+u==) . et-—uaus' (i=+u=:)-:'
°, D,

ts=lis/l:, be=Y2E,/I.is the maximum speed of link 2 and corresponds to the total energy E, of the system.

In the double indices, the plus sign corresponds to motion of link 1 in the direction of increasing coordinate
¢, and the minus sign corresponds to its motion in the decreasing direction. The formula for i3 takes account of the
possibility of change in the moment of inertia of link 1 at points &, and ,, for example on loading and unioading
of a manipulator grip.

On the phase diagram, the second equation of (2), being two-valued, specifies a family of phase paths each
of which consists of positive and negative branches. Since u(¢) is continuous on segment [®,, ,] and equai to = =
at its ends, the branches of the phase path have common points ¢ (®,) =¢(®.) =0, i.e., the phase path is a closed
continuous curve and, consequently, describes an oscillatory process. The system’s period T is determined by its
kinematic (u) and inertial (i) characteristics and depends on the initial conditions ,: T= [, (®.) +1- (D,) ] /..

Let us illustrate the properties of the above oscillatory systems with reference to mechanisms with transfer
functions of the form

1. (@) =T (@ ip=—1) =2, 3)

This type of function (Fig. 3a) is generated in a variable-ratio belt system with a belt of constant thickness
and strong variation of the roll radii, in a hinged four-link in which the distance between centers is much greater
than the lengths of the beams and the angie ¢, is small, in an ellipsograph between its slides, and in other
mechanisms.

The period of the system’s oscillations can be expressed in terms of a complete elliptic integral of the
second kind
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Ifi = 1, the period T = 27/w, and the equations of motion of the links have the form qa==(Do sin wot, ¥

=—Q, cos wot, where w, = ¥,/®, is the circular frequency.

Thus, two identical masses coupled by a transmission with transfer function (3) form a harmonic oscillator.
Its properties differ from those of a potential-system harmonic oscillator. Thus, while the traditional harmonic
oscillator has a natural frequency and an amplitude that depends on initial conditions, the amplitude &, is constant
in the system considered here and the initial conditions, which determine the total kinetic energy, specify the
frequency, i.e., the system is not isochronous. Figure 3a shows the transfer function and phase diagram fori = 1.
Figure 3b reflects the influence of the inertia parameter on the phase paths for I, = const and E, = const.

Let us consider the behavior of the oscillatory system in the presence of dissipative resistances reduced to
the shaft of the first flywheel (M, = 0). In the cases of Coulomb, linear, and square-law friction, the moment of the
resistance forces M, =M, M,=a.9, M,=B,¢* , respectively, where M, ay, B, are constants and Eq. (1) has a

. solution of the form t'pj;j (n,@)=0¢.(9)D;.X(n, @), wherej = 0,12, respectively, for Coulomb, linear, and
square-law resistance; D, . is the damping coefficient and n is the cycle number.

For Coulomb friction (Fig. 4a), we have D, (n, @)=V 1—p[2(n—1)0—0,+9], Di-(n,@)=V1—
p[(2n—1) O0+®,—q], where p=2.1/Ip,".

, Since D, decreases from 1 to 0 as n increases, the damping phase path is found to be inscribed into the
path of the conservative system, is pulled toward the segment [$, $,] (the amplitude of the oscillations), passing
across its ends, and terminates on it (Fig. 4a).

For linear friction (Fig. 4b), D,4+(n, ¢)=1—2[(n=1)V=V.(g)], Di-(n,@)=1—a[(n=1)V+V_
(D.)+V_(@)], where
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Vi(p)= J‘(i++u+’) =3de, V_(@)= j fau) " de,
VeV, (D) +V-(®), a=adlbe

In this case, the damping coefficient depends on the form of the transfer function. Figure 4b shows the
phase path for transfer function (3) and i = 1.

For square-law friction (Fig. 4c), D.,(n,¢)=cxp {B[(n=1)W+W (@)]}, D.-(n, p)=exp {B[(n—
1N W+W, . (D,)+W_(@)]}, where

W.(p)= J'(i*,+u,.’) “tdeg, W_(g)= j {i-Pa’) " dp,

o,

W=W,_(0.)+IV_(D,), B=38/l..

The phase path of this case for transfer function (3) is shown in Fig. 4. In contrast to the previous cases,
the nature of damping does not depend on the initial conditions, since the speed ¥, does not enter into D, ... The
segment [$,, ®,] which the phase path approaches asymptotically, passing across its ends, is analogous to the focus
in potential system with linear friction.

The time of the n-th cycle in damping is determined from the formula

o,

7 e[

o, (PDH-((D) o, ¥o,_ (¢)

For small values of u, @ and 3, the damping coefficients can be treated as varying little from cycle to cycle
and can be taken out from under the integral sign. We then obtain approximate formulas for the time of the n-th
cycle forn » 1: T, (n)=T/Y1=2un®., T, (n)=T/l—naV, T, (n)=T exp3niV.

20
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The most important property of the inertia-type recuperative drive as an oscillatory system is the possibility
of sustaining the oscillations with an external nonperiodic energy source, i.e., the possibility of setting up self-
sustained oscillations. Thus, when a motor that can be reversed automatically at positions ¢, and &, and develops

a constant torque M, is introduced into a dissipative system with square-law resistance, the oscillations tend to a
stable limit cycle ¢.=1aw . (Fig. 4d), where
@,

Va,o=Y2M.B/I,[exp(281V)—1], B= j{exp 9§W (@) ]+

e,

+exp(28[ W, (D.)+W_(9) 1)} do.

We also note the possibility of setting up steady-state self-sustained oscillations with a nonreversible motor.

The oscillatory properties of the drive are clearly illustrated by a model in the form of a material point
moving along the closed-path position function of the transfer mechanism and plotted in the scale u, in coordinates
z=y.Vig, y= Kep.  The equation of motion of this point mydv+Xdz+Ydy=0 agrees with (1) if the mass of the
point m=1,/p,%, and its velocity v=z cos %, where « is the angle between the vectors vand x (tg x = y,’) and the
components of the external forces are X=M,/ p.L_’_Vz_ Y=23M,/u.. The projections of the velocity v onto the axes
correspond to the drive-mass velocities 2=p.¥i¢, y=p.p. Rotational motion of the point in the model
corresponds to oscillatory motion of the recuperator.

It is obvious that for the conservative system (v = const), the period of the oscillations can be interpreted
as the perimeter of the closed path. For cxample for the function (3), which represents a circle in X, y coordinates,
the path for i = 1is an ellipse whose perimeter is determined by formulas that correspond to (4). If i = 1, the point
in the model moves along a circle. Obviously, the projections of its velocity onto the x and y axes vary harmonically.
For a hinged four-link with a nearly elliptical position function, the period of the oscillations is given with high
accuracy by the approximate formula for the perimeter of an ellipse with axes ~ 2c=p, Vi, 2b=p. [ (P,)—v
(P.)]: T=n[1.5(c+b)—Ycb].

This analysis of the recuperative drive points to the conclusion that an oscillatory system based on it (an
inertia-type kinematic oscillator) will possess several properties useful for vibration machines. These properties
include: the absence of an equilibrium position, a natural frequency, and variation of frequency with amplitude as
a result of absence of elastic links, amplitude independent of initial conditions and mass of links, the possibility of
setting up steady-state self-sustained oscillations in a broad frequency range, and the possibility of optimizing the
motion of the final link by adjusting the transfer function.

Constant mechanism amplitude is important in the design of cyclic-action transport machines for
automated systems: manipulators [7], turntables, dampers, etc. Thus, the power requirement of a working
manipulator model with a lifting capacity of 0.63 kg based on an inertia-type recuperative drive is an order of
magnitude lower than the power requirement of its analogs, and is much lighter and more compact. It would seem
a promising idea to combine two or more final links into such a system and generate oscillations by exchanging
kinetic energy between them. Vibration machines of this type would require no energy accumulators at all, and
would eliminate the difficulties associated with resonance and the excitation and maintenance of vibrations at an
arbltrary technologically optimal frequency and constant amplitude, as is often necessary [8]. It would be possible
in mechanisms with many final links to set up wave motions with successive exchanges of kinetic energy between

links.
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OPTIMAL PROBLEM CONNECTED WITH THE MOTION
OF A "FLYWHEEL~" ELEVATOR

NV -Gulia, "M Yu, @chan, UDC 621,01
and I. D. Yudovskii

In connection with the development of high-rise buildings, it has become a serious problem to ensure
the evacuation of people during a fire from the upper stories of tall buildings that are beyond the reach of
telescoping ladders from fire engines [3]. Among the equipment intended for the emergency evacuation of
people, a promising mechanism is the "flywheel" elevator [1], which is shown schematically in Fig, 1. The
load to be lowered 1 is attached to the end of a flat belt 2 that is wound onto a reel 3 attached to the shaft of
a flywheel 4. As the load descends, the belt unwinds from the reel, decreasing its radius, The impact
velocity depends on the radius of the reel at the end of the descent and the moment of inertia of the flywheel,
By selecting these values we can ensure that the impact velocity can be made as small as any value specified
in advance, After impact and the disconnection of the load from the belt, the device can be lifted rapidly and
rewound on the shaft by using the energy that was stored in the flywheel during the descent, Then, the device
is ready for the next descent,

Since one device is needed to ensure the consecutive descent of several people, it is important that
the action be rapid. Because the descent time is considerably greater than the time necessary to lift the belt
back up (the rise time), a problem to consider is how to ensure the most rapid descent of the load by means
of the flywheel elevator., In order to vary the law of motion of the load over a sufficiently wide range, we can
use a belt of variable thickness, which is obtained by gluing a covering to the underlying belt, as was done, for
example, in [2].

The following problem arises, It is necessary to synthesize a mechanism that ensures the fastest
descent of a load of mass m from a height H, such that the following conditions are satisfied: 1) the impact
velocity of the load should not exceed Vo; 2) the acceleration during the damping should be no less than —Wper =
0; 3) the limiting permissible values of the shaft radius R are limited by certain given, positive quantities
whose squares equal a and b (a < b); 4) the thickness of the belt should not be less than hy. The determination
requires the moment of inertia of the flywheel I reduced to the shaft of the reel, the initial radius of the reel,
and the profile of the belt,

From the law of conservation of energy, neglecting the mass of the belt and the dissipative losses, we
determine the velocity of the load

v? (1) = 2mglP ()/[I + mP ()], 1)
where P(l) = R%(l); I is the coordinate of the load, and g is the acceleration of free fall,

For large heights, when the problem of optimization has some meaning, we have I >» mP(l). Then, to
determine the velocity of the load we obtain

v* () = 2mglP (/1. 2

We compare the values of the velocities from Eqgs. (1) and (2). Their ratioe =v1+ mP(l)/Tis a maximum
for P(!) = b and for minimum I, which ensures attainment at the end of the descent of the velocity \/)

tuax = V' T+ b0)/(2gH — 5)a.

The quantities @ and b are determined from structural considerations (a is limited by the flexural rigidity
of the belt and b by the size of the mechanism), so that we usually have a/b= 100, The impact velocity is
the same for descent from different heights (v, =1,5,...,2 m/ sec). As can be seen, as H increases, € max
approaches unity, Thus, for actual structures, €max =1.1for H= 100 m, and e max = 1.05 for H =200 m,

Hence, for large H, Eq, (2) gives values for the velocity that differ little from the exact values of Eq. (1).

Institute of Engineering, Academy of Sciences of the USSR, Moscow. Translated from Prikladnaya
Mekhanika, Vol 18, No. 9, pp. 78-83, September, 1982, Original article submitted March 27, 1980,

832 0038-5298/82/1809-0832507.50 © 1983 Plenum Publishing Corporation
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The geometric relations for the rewinding of the belt are characterized by the function

Pi(ly=—5() . : (3)
or in integral form

l
ot —{s@al,
P(l)y=P(0) o\ 0l )
‘where 6(l) = h(l)/;(; h(l) is the thickness of the belt.

Differentiating (2) with respect to time and transforming, accounting for (3), for the acceleration of the
load we obtain
w(l)=[P()—16(])mg/l. (5)

Conditions 1) and 2) taking into account Egs. (2) and (5) assume the form vi 2 2mgHP(H)/IL; —Wper = [P(l)—
lo(l)jmg/1. The time of descent is determined from the equation

H — H
dl / dl
"jv—u)‘l/z?g'f?‘—w'
0

Taking into account the relations obtained, we have the following mathematical formulation of the problem.
The functions 6(1) and P(/) are connected by the relation (3), and superimposed on these functions are the
constraints corresponding to conditions 1)-4) ]

PH)KIA; (6)
P(y—16() > —BI: )
I<ae<Ph<hH : 8)
5 >8>0 ©)

where A = voz/Z!ngH >0;B= wpet/mg 2 0; and 4, b, and , are certain given positive quantities,

Out of all the functions that are piecewise-continuous on the segment [0, H] it is necessary to find
functions 6(.) and P(l), and also values of the parameter I that will ensure a minimum of the functional

M
= [ VP . (10)
0

We should note that the constraints (8) and (9) and Eq. (4) are compatible only when the following in-
equality is satisfied:
11
b—6,H >a. 64
We will call the functions o(/) and P(l) and the parameter ] that minimizes the functional (10) optimal,
and we denote them in terms of 6° (/), P*(/), and I, and the value of the functional in terms of 7° corrcspond-
ing to them.
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Fig. 3

We show that the optimal soilution is the following. The parameter I* is the minimum possible value
out of all the values of I that do not contradict the constraints of the problem. For the functions o* (¢) and
P*(l), depending on the values that enter into the conditions, there are two cases possible.

1. For B = B,, where B, is a certain quantity characterizing the initial data, the sought functions con-
sist of two segments separated by a certain point with coordinate S. For /=(0, S] &(/) mé,, P® (1) =b—bql ,

and for /=[S, H] the sovzht functions satisfy the algebraic equation

i8* () —P*(h = I*B (12.
and differential equation (3) with boundary condition
P*(H) = I*A. (13

The value of S is determined from the condition of continuity of the function P=* (¢) at point S,

2. For 0= B = B,, the sought funétions consist of only the first segment, i.e., for them we have S =H.
The form of the function P=*(l) is shown in Fig, 2 for various B.

The indicated form of the optimal solution is found beuristically from the following physical considera-
tions, The quickest descent corresponds to laotion of the load with maximum velocity, which is attained with
minimum possible moment of inertia of the flywheel and maximum value for the radius of the reel. The latter
is attained if the initial radius of the reel has the maximum permitted value and is decreased in the slowest
way possible from among the possible methods, i. e., by the winding of a belt of thickness O¢ until the beginning
of damping with minimum permissible acceleration —Wper leading to impact with velocity Vo. The second case
(0 = B = B;) holds for small Wper When the remaining quantities that enter into the conditions are fixed. Itis
characterized by the fact that for satisfaction of the constraint (7) the moment of inertia of the flywheel and the
radius of the reel at the end of the descent will be so large that the impact velocity will be less than vy, and the
section of variable thickness will be absent,

~
~

We assume that there exist certain other functions o(t) and P(/) satisfying constraints (6)-(9), and also
the other parameter I, which give the value T < 7» for the integral (10). Then

“ pom— ]
o g 0 - 1) o
]

which leads to the inequality
PU)—iP*()>0 (i =1/I°). (14)
Note that according to the definition of 1* we have i = 1.

We show that it is impossible for inequality (14) to be satisfied at a single point of the segment [0, H].

We consider the segment [0, S]. Substituting the value of P(/) from (4) into (14) and separating i into the
sumi=1+ a4 (s = 0), we obtain

§ 18, Bl = (b —b4d) A + b — P (0). (135)
'

The first term on the right side of (15) is positive by virtue of (11), and the second — by virtue of constraint
(8). Hence the integral on the left side of the inequality is positive, which contradicts the constraint (9).
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Thus, on the segment [0, S], inequality (14) is not satisfied. In particular, this is also true for S = H.
So for 0= B = B;, when the sought function consists of only the single section 0* (L) = o,, it is proved that it is
impossible for a functional T < 7* to exist. Because inequality (14) is not satisfied at any point of the segment
[0, S] it also follows that

P(S)—iP*(S)<0. 1)

We now consider the segment [S, H]. We introduce the auxiliary function

() =[P () — iP* D)L, a7

which must be positive in order to satisfy (14). We let inequality (14) be satisfied at the point 4, i.e., y(}) 2
0.

For satisfaction of the constraints y(/) we cannot assume arbitrary values at the ends of the segment
[S, H]. From (16) it follows that y(S) = 0. On the other hand, taking into account (11) and constraint (6), we
have y(H)=|P(H)—iP*(H)) < (IA—il*"A)H=0 , i.e., y(H) = 0.

Thus, y(l) is not positive at the ends of the segment [S, H], and within the interior there exists a point
at which y(,) > 0. By virtue of the continuity of the function y(l) there exists a segment [a, B8] including the
point l, within which y(l) >0 everywhere, with y(a) = y(p) = 0. Differentiating (17), with accounting for (3)
and (12), we obtain y'(l) = P(l)=16(l) + I*Bi. If we now use constraint (7) and the fact thati = 1, we arrive
at the conclusion that y'(l) = 0. It is clear that

]

yy=y(@)+ (} y'(p)dl..

Let y'(l) = 0 for all i=[a. B]. Since y(a) = 0, we conclude that y(J) = 0 on the segment being considered,
which contradicts the assumption that the function y(¢) is positive., We now assume that there exist certain
values of ! for which y'(/) >0. Then for /, = p the integral on the right side is strictly positive. At the same
time, y(B8) = 0 and, hence, the assumption made is not valid. Therefore, inequality (14) is not satisfied over
the entire segment [S, H]).

Thus, it has been proved that there do not exist satisfactory constraints on the functions ¢ (/) and P(!)
and the parameter ], differing from those assumed, for which the integral (10) is less than 7*. We now deter-
mine the values of the functions 6* (.) and P* (/) and the parameter I*.

From the parameter I* we made use of only the information that it is the minimum of all the values of I
satisfying the constraints. From inequality (7) for I = H we have

Bl > H8(H)y—P(H). (18)

We show that the values of I for which inequalities (6) and (18) are satisfied cannot be less than the
quantity I* given by the equations

I* = §,H/(A+ B) (0KB<B,). (20)

where B. corresponds to the equality of the values of 1* from (19) and (20)
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B, = A(§Hla —1).
From constraint (6) with account of (8) for the assumed values of I* we obtain

P*(H)y=a (B> B,): (21)
a < P*(H) < GHANA +B) (0K B<B,). (22)

For B = B, we let there be a certain moment of inertia T=1i,a/A (i; < 1) and the value f)(H) = kya that
corresponds to it, where k, is an arbitrary coefficient. Substituting T and 13(H) into constraint (6), we obtain
k= 1~1 ol dsies; '15(H) < a, which contradicts constraint (8). For 0= B = B,, assuming that I = i,0,H/(A + B)
and P(H) = k.0,HA/ (A + B), from condition (6) we obtain k, = iy < 1. If we now substitute T and §(H) into (18)
and we convert, with account of inequalities (9) and (22), we have i;B + k,A > A + B, which is incompatible
with the condition k, = i; < 1. Hence, it is not valid to assume that it is possible for T to be less than I*,
Thus it is shown that, independent of the form of the functions 6(l) and P(l), the parameter I cannot be less -
than I*, depending on the initial data and the constraints according to Eqs. (19) and (20).

We also establish an additional constraint on the quantity P(H). Considering (4) for ! = H with account
of constraints (8) and (9), we arrive at the inequality

P(H)<b— 8,H. (23)

With decreasing B the upper boundary of P(H) from (22) increases and attains the limiting value from (23) for
B, = A(26,H—b)/(b—o0,H). Hence, for 0 = B = By, it is necessary to allow for P(H) the range of possible value:
a = P(H) = b—o6,H. The boundaries obtained for I and P(H) are given in Fig. 3.

-

We find the 6*(1) law on the segment [S, H] and the value of the coordinate S. Substituting o* () from (3)
into (12), we obtain a differential equation in P* (), the solution of which, taking account of the boundary condi-
tion (13), will be the function

P*()=(A+ B)I*H/b—I*B. (24)
When this is differentiated, according to (3) we obtain

8*(I) = (A + B) I*H/L2. (25)

We find the value of the coordinate S from the condition of continuity of the function P* (¢)—P;*(S) =
P,* (S), where P(S) and P,(S) are the values of the function on the sections [0, S] and [S, H], which have alreac :
been found. Hence, we have the equation b—6,S—(A + B)HI*/S + I* B = 0, whose roots are

Sy2=0.5[b + BI* == V (b + BI*)*—48,(A + B) I*H}/5,.

We assume that the point of switching is given by the coordinate S; > S,. We consider the function y({) =
1[P,* (I)—P,* (1)], which, on the segment [S;, S,] with account of (4) and (24), equals y ({) = —0gl 2+ (b+ BI*)
l—(A + B)I*H. Since S; and S, are its roots, in the interval (S;, S,), the quantity y,(!) > 0, i.e., yo(l) is a
particular case of the function (17) for 5(1) =P;*(l), i=1, a=8S;, p = S, and, hence, its existence is also
impossible, and the sought value of S is

S =05[b+ BI*—) (b + BI*}* — 48,(A + B) I*H]/5,.

The value of the coordinate S as a function of B is represented in Fig. 4.

By substituting the optimal values obtained for the functions o* (1) and P* (/) and the parameter I* into
expressions (6)...(9), we can verify that they agree with the conditions of the problem.

As an example we synthesize the mechanism that executes the quickest descent of the load for m = 100
kg, H= 100 m, v, = 2 m/sec, Wper = 4 m/ sec?, hy= 0.2 mm, a = (10 mm)*= 107 m?, b= (100 mm)’=10"%n
For it we have I = 5 kgm?, R(H) = 0.01 m, S =81 m, h(S) = 0.96 mm, h(H) = 0.63 mm. The profile of the belt
and the curve of the motion of the load are shown in Fig. 5.
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DYNAMIC CHARACTERISTICS OF AIR BEARINGS

O. B. Milovanova, O. N. Chekin, UDC 539.3
and M. Sh. Dyshel'

It has been proposed [1) that air bearings be used for vibration testinz of large and heavy beam and shell
structures. The purpose of such a bearing is Lo take up the weight of the Lestec obyect, 1o provide the support
platiorm of the object with necessary degrees of {reedom, and to provide vibration isplation between the object
and the ambient medium. lpnasmuch as the air bearing is a component part of the "test object — air bearing"
system, it adds its mass, stiffness, and energy dissipation to this sysiem. These characteristics of an air
bearing must be determined before their influence on the vibration characteristics of the test object can be
evaljuated. In an earlier study [2] data have been reported on various designs of air bearings, behavior of
such bearings under static load, and dependence of their stiffness and dissipative properties on geometrical
and physical parameters. ln this study will be present data on the characieristics of air bearings under
dynamic load. ®

1. Tests were periormed on singly connected and doubly connected air bearings with the same geo-
metrical characteristics as before [2]. The tests were performed in a stand facilitaung excitation of transverse
vibrations of air bearings along the OX axis, longitudinal vibrations along the OZ axis, and torsional vibrations
about both OX and OZ axes. The test of air bearings for longitudinal vibrations is shown schematically in
Fig. 1. Two air bearings 14, separated by 2 spacer-plate 13, were placed between cross-arms 12 of the test
stand. The pressure of compressed air entering the bearing caviry was recorded by manometer 11 and the
axial force deveioped by the air bearings was measured with dvnamometer 6. For exciting vibrations in the
air bearings, tne spacer-plate 13 has been rigidly connected in the middle to 2 special vibrator & consisting
of two beams of rectangular cross section spaced svmmetrically about its longitudinal axis and joined through
three cross-arms: one at the center and one at each end. This construction of the vibrator makes it possible
to vary its flexural stifiness by rotating the beams about their longitudinal axis and thus vary the freguency
of vibrations. The vibrator was excited by an electromagnet 1 fed through a model LIT-2 inverter 2, the
frequency of its vibradons being regulated by means of 2 model ZG-16 audio oscillator 2. The vibration process
was recorded tarougn BIL-type vibrators 4 oo a model N-105 loop oscillograpk 5. After the vibrations of the
najr bearing—spacer-plate—vibrator" sysiem have been tuned to resonance (as indicated by the signal on the
oscillograph reaching its maximum), the plate supply of the inverier was switched off with the vibrations of the
svstem changing, as a result, from steady ones to decaying ones. By changing the orientation of vibrator §
and the point of its attachment relative to the spacer-plate 13, also by changing the direcuon of action of the
exciting force, it was possible 1o realize all the four given modes of vibration in tne air bearings.

The technical characteristics of the vibrator were: irequency range of patural flexural vibrations in the
fundamental mode &-1& Hz, logarithmic gecrement of vibration amplitude 0.017, mass 265 kg. The

» This study, just as the earlier one, was periormed under the guidance of S. V. Malashenko.

TABLE 1
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uDC 621, 839
OPTIMUM BA LLASTING OF WOUND FLYWHEELS

Yudovskiy L D, (Moscow)

A criterion for the optimum value of ballasting of a
wound anisotropic flywheel is considered, based on the _
condition of achieving the highest volume density of energy.
Anisotropy coefficients are given for the cases most often
encountered In practice, 4 figs,, 3 refs,

Flywheels made by winding of high-strength filament and fibre materials are
distinguished by high-energy density and safety agalnst bursting. One of the problems
arising in the development of these flywheels is maintaining the compactness of the
wound rim under the action of centrifugal forces, A loss of compactness of the wind-
ing causes delamination and failure of the flywheel,

Fig. 1, Diagram of a wound
flywheel with ballast:
1 - wound layer, 2 - ballast,

The most convenient method of preventing delamination Is the loading of the
inside surfaces of the flywheel with ballast which compresses the rim from the inside
during rotation, An annular element 2 (Fig. 1) devoid of tangential stiffness, placed
inside the wound rim 1, is often used as a ballast, for example, a set of segments or
a heavy powder, In a flywheel, practical considerations usually determine the extern-
al diameter; in fact, they limit the volume of the element which concentrates the
energy. The problem arises of selecting the inside radius of the flywheel and the
relationships between the density of the ballast, its thickness, the density and thick-
ness of the wound layer such that the maximum quantity of kinetic energy is accumu-
lated in the effective volume of the flywheel, without exceeding the allowable stress,
I.e. the problem is that of maximising the volumetric energy density of a ballasted
flywheel subject to stress limitations, In this formulation of the problem the effective
volume s understood as the total volume of a cylinder of given length bounded by the
outside radius, If the flywheel is a hollow cylinder, then its effective volume contains
the volume of the hollow space,

A cylindrical flywheel of unit thickness with the outside radius Rq, Inside radius
Iy, and inside radius of the wound layer % is considered, The specific gravities of
the winding and ballast materials are yy and vy respectively, The geometric
dimensions of the flywheel are defined by the relative quantities r =r1,/Rg and
x =% /R,

A coefficient of ballasting efficiency is introduced
Kp = ey /Tmax m

where e, Is the energy density and Tmax are the maximum stresses,
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For a rim of cylindrical shape

_‘;_ = s (R."-X‘)""h (x—rs') =

w m.‘ - (2 )

where E is the energy accumulated in the flywheel; w = 7R 2 s its effective
volume and w is its angular velocity,

In Ref, 1, the radial stresses N and tangential stresses T were obtained for
anisotropic wound rotor

N(p) -=1.u'u'(-ap‘+C.p"‘+C,p""), 3)
T(p) =yeu'x*[ -Pp*+k (Cip*'—Cop™ ) ), “)

where a = (vg+3)/(9 - k2); B=3a - 1; p =pg/ni Po Is the variable radius

(between r, and Ry): k= VEJE, Iis the anisotropy coefficient; Eg, E ;
vg are the elastic moduli in the tangential and normal directions and the Poisson
ratio in the tangential direction,

The Integration constants C; and Cp canbe obtained from the conditions that
the stresses at the periphery vanish and that no delamination takes place, i, e, that o
radial tensile stresses occur in the rim even at the smallest load on the windings
caused by the bursting pressure of the ballast, These constants are found to be
(Ref, 1)

a(k+3) ak-3) ., )

- -.‘ 3
L& 2k e 2k

It is an essential fact that C; and C, dependon x, I should be noted that,
if some radial tenslle stresses are allowed in the wound material because of the pre-
sence of a bonding substance, the Integration constants will acquire different magni-
tudes,

Assuming p =1, Equation (3) ylelds the magnitude of the radial stress at the
inside surface of the rim such that delamination is avoided, namely

N(1) =1.0'%* (—a+Ci+C)). ©6)
This stress Is created by the pressure N, of the ballast layer during the

rotation of the rim,

Over a unit length of the periphery at the radius ., a force produced by a ring
of the radius p, and the thickness dp, acts, namely dN,=1.a’p.dpsps/x hence,
after integration, it follows that

3
No—= ";"

(%*—r"). (7)

Since N, = - N(1), It follows from Equations (6) and (7) that the condition of the
absence of delamination in the rim 18 :
3(a—C,—C,)

=)

(8)
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where y =y, /yy Is the relative density of the ballast material,

It follows from Ref, 1 that the largest tangential stresses in a ballasted flywheel
arise at the inside surface of the rim (at p = 1) and these stresses, by virtue of
Equation (4), are equal to

Tu=1.0"%* [—p+k(C,—C) ). )
Using Equations (1), (2), (9), the magnitude of the ballasting efficiency becomes

U A—ztty(at-rt) (10)
S TR AT

In the general case, an analytical examination of Equation (9) for the maximum
valueof T . asa function of the two variables r and x leads to a system of alge-
braic equations of high powers, However, for any concrete case of ballasting, it is
always possible to calculate Ky numerically for different values of r, choose the
optimum value and find the corresponding values of x and of the relative density v.

By way of example, the condition of optimum ballasting of a flywheel wound of
steel wire without bonding material will be determined, The dimension of the inside
bore of the flywheel is not given, As will be shown below, the anisotropy coefficient
for the case under considerationis k=20,

Fig. 2 shows a family of l(o (x) curves for r =0; 0, 4; 0.6; 0 8; obtained
from Equations (5), (8), (10). It is seen that a maximum value of ballasting efficiency
(Kp, = 0.278) is achieved with £ =0.6, x=0,73 and y =2,23, For steel wire, the
maximum allowable stress is T, = 3.107 N/mz, With this stress, a unit of
volume bounded by the bulk of the flywheel embodies an energy density ey = KpThax=
=0, 834" 102 J/m?3, Assuming that the space factor of a wire wound rim is equal to
0,79, it follows that yjy=0.79-7.8 =61 g/cm3 and y},=2.23-6.1=13.6 g/cm3,
the ballast can be made of uranium powder placed in a lead matrix (Ref, 3).

The anisotropy coefficient k will now be determined with greater accuracy for
the most frequently used wound flywheels,

In winding flywheels from a strip or from rectangular section wire without inter-
mediate layers of bonding material, this coefficient 13 equal to unity, because the
elastic properties of the material in such a flywheel are equal in the radial and tan-
gential directions, It is easily shown that, in the case of the presence of an embedding
bonding substance, the anisotropy coefficient is

k-V (o.,+ %o.)(o.+%m)/ 02 +80)%,

where §,, 8. are the thicknesses of the strip and of the bonding layer; E,, E; are
their elastic modull,

The magnitude of the anisotropy coefficient k will now be determined for the
case when the rim is made of round section wire, Such a rim is wound on a spool
with axial lay -up of the wire and constitutes wound cylinders nested in each other,
where adjacent cylinders are wound in opposite senses,
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Fig. 2, Curves of the ballasting efficiency with different
dimensions of the inside bore of the flywheel (r=0;
0.4; 0,6; 0.8),

In the absence of a load which compresses the wire turns in a radial direction,
these cylinders have a polnt contact, Under load, the contact spot acquires the shape
of an ellipse, greatly extended along the wire axis, If the diameter of the rim is much
larger than the diameter of the wire and of the winding pitch, the ellipse can be
regarded as being extended so far that the contact spot degenerates into a contact band,
1. e, the turns lie exactly above each other (Fig. 3). The intervals between the turns
are filled with the bonding material which merely plays the part of fixing the positions
of the winding turns, In studying the contact between turns in two adjacent layers of
the wire, each turn is regarded not as a torus but as a cylinder, i e, the radius of the
turn Is regarded as infinite, Thus, the problem is reduced to finding the displacement
by compression between two parallel cylinders, making contact along their generating
lines,

Fig 3. Analytical model to
determine the anisotropy
coefficlent for a wire or
round section,

It is assumed that an element of the material is compressed across the winding
by a force N, causing relative strains in the material in this direction, which are
equal to e, The elastic modulus in the radial direction when compressive stresses
are present in the rim is obviously equal to Ep = N/e, The total deformation in the
radial direction is the consequence of the approach between adjacent wires due to
contact strains, The solution of the Hertz problem for the contact between two
cylinders along their generating lines is (Ref, 2)

L 1
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s-o.m—;-(l--":n.os). an

where a is the wire radius; E 1s the modulus of elasticity of the wire material;
q is the load per unit length of the wire,

If, in the element under examination, n cylinders are contained, then the
total deformation of the element is 6(n-1), and the relative deformation is
e = 6(n-1)/2an, With large values of n, it can be assumed that € = 8/2a, The
load per unit of wire length 18 assoclated with the stress by the equation q = 2aN,
Thus, Ep = q/6, and, taking account of Equation (11), it becomes
E, = B/0,579[1,357+In (E/N)],

Assuming Eg =0, 79E, the anisotropy coefficient k becomes
£=0,67671,357+1n (E/N). (12)

The range of variation of k for real flywheel structures will now be considered
To this end, Equation (12) is rewritten in the form

k=0,67671,357—In nesp,

where n=N/T .y is the ratio of the radial stress in the flywheel to the maximum
tangential stress; e = E/Tqax 18 the relative strain of the rim in the tangential
direction, equal to the maximum allowable strain of the wire,

For materials used in the manufacture of flywheels, e, =0. 01 - 0,03, Such
a range of e, variation practically does not reflect upon the magnitude of k.

The value of n varies from zero at the flywheel periphery to a certain maxi-
mum value at the inside surface of the rim, namely, Nmax = | Nmax /Tmaxl %
Equations (3) - (5) yield the following expression for npnax*

(= (k+3) 32k - (k—=3) z~4-/2k (13)
3—(k+3)s--=/2+(k—3).—-~-'/2-(9-&!)/(\-.3;37 :

Newaz =

In practice, the ratio of the inside radius of the winding to its outside radius
varies within the limits or X = 0,6 - 1,0, With such a variation, it is secn from
Equation (13) that, for k varying in the range between 1,5 and 2.5, Mqax does not
exceed 0, 1, 1, e, the normal stresses in flywheels do not exceed 10% of the maximum
tangential stresses, It is seen from the curve in Fig. 4 that the anisotropy coefficient
of a wire wound flywheel differs little from the value k.= 2,0, which should be
adopted for stress analysis, The sharp rise of k at n < 0,01 is nottaken into
account because it occurs only in a few final windings,
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where / -Jl/Jz',a = K/J:.

To deal bricfly with the case when the acrodynamic
losses can be disregarded, from formula (2) velocity, accel-
cration and time of turn of the member 1 depend on the
angle v, in conformance with the formulae

Prm=Gow (91); Gramiie (91): Lo (91) /o,

where the functions w(y, ), (¢, ) and 7(p; ) are analogs
of the velocity, acceleration and time of tum which are
linked to the angle v, by the relationships

; <

PR S b o -?_;‘_—"“;-' (o) = § VI dqu.

viFa'

In Fig. 2 are shown the graphs of the analogs of the
velocity w and of the acceleration €,-and also a graph of
the angle of tumn ¢, of the member 1, as a function of
the analog of time 7 for the mechanism with which the
ratio / of the link rod length to the length of the arm
equals 3, and / = 1. With a maximum angular velocity of
Y0 =5s"',anda corresponding angular velocity of the
manipulators, the maximum acceleration ¢ = 16,752 and
the time of turn is ¢ = 1,3s, The angle of turn amounts in
this case to ¢ = 233,13°, :

In Fig. 8 are shown the dependences of ¥, T and € on
the geometry of the four-link mechanism as expressed by

the magnitude of /. It is important that when /< 2,4, the - -

maximum acceleration of the member 1 is reached not at

the boundaries of the ¢ycle (curve €) as it was the case

in Fig. 2, but in the middle (curve €M). This makes it

possible to synthesize drives, with which the braking force

"..and acceleration veduces smoothly to the boundaries of

 the cycle, which is particularly useful for a reduction of
the vibrations of the arm of the manipulator for a sharp

change ot thc dynamic loads at the beginning and enu ut
the motion. :
The total angle of tum ¥ = 360°—2 arc tan (/=1) does
not depend on the dynamics of the manipulator and is
determined only by the lengths of the members of the

+ four-link mechanism. Co-ordination of the angle of tumn

of the member 1 (Fig. 1) with the required angle of tum P

of the manipulator is ensured by a reduction gear 4.
The dynamic characteristics of the mechanism were
checked experimentally on models of a device which
performed recuperative braking both of revolving and of
reciprocating masses.
The data quoted proves the possibility of an effective

use of a flywheel-lever recuperator in drives of manipul-
ators. ;
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DESIGN. TESTING AND RELIABILITY OF MACHINES

RECUPERATIVE FLYWHEEL DRIVE FOR NON-REPROGRAMMABLE AUTOMATIC MANIPULATORS

Vestnik Mashinostroeniva, Vol, 63, [ssue +. pp. 9—-11
L. D. ludovskii

The increase in the speed of action and the load carrying
capacity of manipulators usually entails an increase of the
power of the drives and of the damping devices, and also
an increase in the energy consumption. The reduction of -
the cycle time for existing manipulators is limited by the
demand for precision in the positioning of the moving
members' . When use is made of special positioning
systems, the drive becomes complicated and its functional
reliability is lowered. Morcover, when braking, the kinetic
energy is converted to heat which often leads to the need
for using devices for cooling and regulating heat to main-
tain the stability of the drive characteristics. At the same
time, in 2 number of articles, for example by Akinfier
and Korendyasev?+3, it is suggested that a recuperative
braking system for the moving components by used in
manipulators. This provides a reduction in the power of
the drive and the energy consumed, due to the use of the
braking energy, which is stored in spring accumulators,
for the next acceleration. The possibility of speeding up
the drive action of a manipulator-by an order of magnit- -
ude is mentioned by Akinfiev*, which at the same retains
its power thanks to the use of a recuperation system. -

In addition to the recuperative drives for manipulators, . .
use can be made of a flywheel-lever recuperator* for non-

reprogrammable automatic manipulators and other mech-
anisms with a determinate displacement of the actuatng
clement.

The recuperative flywheel drive which is shown in the
diagram of Fig. 1 consists of the arms 1 and 2 and the
link rod 3. The arm 1 is connected through the transmiss-
ion 4 and the clutch 5 to members which effect one of
the stages of mobility of the manipulator, ¢.g. rotation.
On Fig. 1 these members are represented by the flywheel
6. The arm 2 is connected by the transmission 7 and the
clutch 8 to the flywheel 9 which is an energy accumulator.

~ The dissipative losses of energy are compensated by a

motor 10.

The lengths of the members of the four-link mechanism
are chosen such that when the arms are revoived from the
extreme positions /, //, /11, |V, the transmission ratio
between them varies monotonically from 0 to o, In
particular, this occurs when the lengths of the arms 1 and
2 are the same and the length of the link rod 3 is such
that when one arm is perpendicular to the link rod, the
second lies on the same straight line as the link rod.

Turning now to an examination of such a drive, the
clutches 5 and 8 are disengaged in the position of stand-
still of the manipulator members (the flywheel 6 is not -
moving), and the members of the hinged four-link
mechanism are set in the position / in such a way that
the angie 8,4, C = 90° and the angle 4,08, = 0. The
flywheel 9 revolves autonomously at this time or is
recharged with kinetic energy by the small-power motor
10 through the clutch 11. To set the flywheel 6 in motion,
the clutches 5 and 8 are engaged and the clutch 11 is dis-
engaged. The revolving flywheel 9 is now connected with
the stationary flywheel 6 without any shock, because the
transmission ratio from arm 1 to arm 2 is equal to — oo,
When the arm | tums from position / to position // -
through the angle ¢, =90°, the flywheel 6 is accelerated

® Author’s Claim No. 530132 (USSR).
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by the flywheel 9 and the transmission ratio between the
arms changes automatically from —-oo to 0, which ensures
a complete stop of the flywheel 9 in posidon //. Braking
of the flywheel 6 and its stop in position /// then occurs
through the angle Y. The flywheel 9 is thereby acceler-
ated to the maximum angular velocity. After this, the
clutches 5-and 8 are disengaged. A turn of the arm 1
from position / to position 74 has thus been ensured
while preserving a considerabie part of the energy in the
flywheel 9 which is left to rotate freely or, if required,
to be recharged by the reversible motor 10. To ensure a
turn of arm 1 into the original position, the clutches 5
and 8 are engaged, and the clutch 11 is disengaged. When
the four-link mechanism passes into the position /V, the
flywheel 6 is accelerated and the flywheel 9 is stopped
in an angle of tumn of the arm 1 of 90° and the flywheel
6 is then braked to a complete stop in an angle of turn
of Y. After this, the mechanism retums to the original
position. The energy losses for revolving the flywheel 6
are a result of its dissipation due to resistances in the
drive. It is essental here that an accurate angie of tum
(¥ =¥, + Y3) of the arm 1 is ensured automatically by
the ratio of the lengths of the members of the four-link

- mechanism; it depends on the dynamics of the turn.only

as regards the elasticity of the elements of the kinematic
chain between the flywheels. When there is adequate
rigidity, the increase of the mass (or of the moment of
inertia) of the driven members of the manipulator and of
the velocity of their motion does not affect the accuracy
of the stop. :

The principal characteristics of a manipulator will now
be determined, using the recuperator. It will be assumed
that during mation the moments of inertia of the moving
members of the manipulator, reduced to the arm 1, are
unchanged and equal to J,, and the moment of inertia
of the flywhcel 9, reduced to the arm 2, is equal to J;.

The equation of kinetostatic balance of the members
1 and 2 during an acrodynamic resistance to motion of
the manipulator has the form*

1@1+RG1+ ulsgrme0. (n

Here and later on, ¢, v2, 1, ¥2, 91, ¥; are the angles
of turn, counted from the direction CO (Fig. 1), the vel-
ocities and the ncg:ele.rations of the members 1 and 2,
respectively; v = y; /g, is the ransmission ratio from arm-
1 to arm 2 which depends on the angle v, in conformity
with known formulae, presented for example in
Artobolevskii® ; & is a coefficient of acrodynamic resistance.

The equation (1) can be transformed to a differential

equation of the form
d¢ .
(i+u?) 4-:: + uug 91 +amQ,

Its solution will be, with due regard for the initial condit-
ions (when g, =0,¢, =0, ¥2 = o) the function

*
wo—a { (i+u?) ~*%dq,

]
=3 . 2
i Yitw S
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